Precisely-tunable Single-frequency Laser

Published on: Thu Jan 05 2012

Carrie Segal, Marty Cohen, John Noé Laser Teaching Center, Stony Brook University✣ Project Motivation [caption id="attachment_1008" align="alignleft" width="150" caption="Source: J.U. Fürst"][/caption] While researching methods of second harmonic generation, we learned that achieving frequency doubling at a low power level was a novel use of whispering gallery resonators. This led to an exploration of whispering gallery resonators, and resulted in an interest in developing a precisely tunable laser source for the excitation of these narrow (in the MHz range) modes. We hope to excite narrow whispering-gallery resonances in macroscopic glass spheres by evanescent-wave coupling to a precisely-tunable single-frequency laser source. As a first step, we have developed a 130-190 MHz tunable source for a 632.8 nm HeNe laser, using a 65-95 MHz AOM in double pass configuration. Whispering Gallery Modes Examples Of Optical Whispering Galleries Shapes & Sizes •Microsphere R ~ 2cm, sphericity deviation < λ0/40[1] •Circular disk with curved sidewall, radius from  2mm -  5mm, height ~ .5mm Materials •Calcium fluoride[4] •Lithium Niobate[2] •Fused Silica[1] Fabrication Hand polishing of prefabricated crystalline structures and melting of silica into spheres. Precisely Tunable Laser The width of resonant modes depends on the size of the resonator and the quality of fabrication. In our resonator, we hope to achieve mode widths in the MHz range. To observe these modes, we have built a double pass AOM arrangement with a modified cat's eye reflector.
  1. Vertically polarized light passes through a polarizing beam splitter [PBS] and into the AOM.
  2. After diffraction in the AOM, the first order beam, frequency shifted by f, emerges at 2x the Bragg angle to the zero order beam.
  3. A plano-convex lens, a focal length away from the AOM, results in parallel rays. (modified cat’s eye).
  4. The zero order beam, which is not frequency shifted, passes next to the mirror and is directed along the return path.
  5. The first order beam strikes the mirror and reflects through the QWP, becoming horizontally polarized, and retraces its path through the AOM where a second Bragg diffraction results, creating a beam frequency shifted by 2f.
  6. A second PBS directs the 2f shifted light along the return path, where an aperture assists in beam alignment.
  7. A GT polarizer balances the ratio of shifted to original frequency light, incident on the detector.
  8. A DET-210 photo-detector is connected to a signal amplifier and  oscilloscope.
[caption id="attachment_1012" align="alignnone" width="345" caption="Optical Table"][/caption] [caption id="attachment_1013" align="alignnone" width="379" caption="Acousto-Optic Modulator"][/caption] [caption id="attachment_1014" align="alignnone" width="358" caption="Modified Cats Eye"][/caption]
Beat Frequency To demonstrate the success of our arrangement we recombined the original & shifted beams and observed a beat. [caption id="attachment_1015" align="alignnone" width="472" caption="Beat Frequency"][/caption] The upper trace shows the amplified 160 MHz beat signal observed with our double-pass arrangement. The lower trace is a sample of the 80 MHz AOM drive signal. Sweep speed of the Tektronix 485 oscilloscope was 5ns/cm. Resonances [caption id="attachment_1016" align="alignleft" width="150" caption="Souce: Schiller & Byer"][/caption] The peak width of resonant frequencies is determined by the Q of the resonator. Our goal is to measure resonant frequencies with a MHz width, using a fused silica microsphere, similar to an experiment by Schiller & Byer [1] . Current research into very high Q (~10 million) resonators requires KHz frequency tuning of the input laser, to detect sub kilohertz resonant frequencies.   [caption id="attachment_1017" align="alignnone" width="319" caption="Whispering Gallery Mode Resonances"][/caption] Resonant Mode Spacing References [1] S. Schiller, R.L. Byer, Opt. Lett. Vol 16, No. 15 (1991) [2] E.A. Donley, et al. Rev. Sci. Instrum. 76, 063112 (2005) [3] J.U. Fürst et al. Phys. Rev. Lett. 104, 153901 (2010) [4] A.A. Savchenkov et al. Opt. Exp. Vol 15, No. 11 (2007) [5] A.A. Savchenkov et al. Opt. Lett. Vol 32, No. 2 (2007) [6] A.B. Matsko et al. IPN Prog. Rep. 42-162 (2005) [7] V.S. Ilchenko et al.  Phys. Rev. Lett. Vol 92, No. 4 (2004) ✣ Supported by NSF-REU (Summer 2011)